Investigation of the Shock Wave Formation and Intensity in Wave Rotor

Author:

Liu Peiqi12,Li Xiang3,Liu Xinyu3,Yang Jun2,Feng Mingyu3,Hu Dapeng3

Affiliation:

1. Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;

2. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

3. Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Abstract Actual formation and intensity of shock wave generated during gradual opening and closure between each port and passages of wave rotor are studied by means of experiment and computational fluid dynamics simulation. The results show that the intensity of shock wave increases with the distance from high-pressure inlet, and the reason for the variation tendency is the superposition of compression waves. By changing the rotational speed and the expansion ratio, the shock wave intensity can be adjusted, but the position where the intensity reaches maximum stays constant basically and keeps the distance near 300 mm from high-pressure inlet. Comparing with the one-dimensional simplification result, the actual intensity of shock wave is lower. The difference between the fact and simplification increases with the rotational speed and expansion ratio. The internal mechanism has been analyzed from the aspect of intake mass. Then, the maximum shock wave intensity is found approximately linear to the intake mass of each rotor passage in each cycle.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3