Geometric Effects of Thermal Barrier Coating Damage on Turbine Blade Temperatures

Author:

Colón Shane1,Ricklick Mark1,Nagy Doug2,Lafleur Amy2

Affiliation:

1. Embry Riddle Aeronautical University, Daytona Beach, FL

2. Liburdi Turbine Services, Dundas, ON, Canada

Abstract

Abstract Thermal barrier coatings (TBC) found on turbine blades are a key element in the performance and reliability of modern gas turbines. TBC reduces the heat transfer into turbine blades by introducing an additional surface thermal resistance; consequently allowing for higher gas temperatures. During the service life of the blades, the TBC surface may be damaged due to manufacturing imperfections, handling damage, service spalling, or service impact damage, producing chips in the coating. While an increase in aerofoil temperature is expected, it is unknown to what degree the blade will be affected and what parameters of the chip shape affect this result. During routine inspections, the severity of the chipping will often fall to the discretion of the inspecting engineer. Without a quantitative understanding of the flow and heat transfer around these chips, there is potential for premature removal or possible blade failure if left to operate. The goal of this preliminary study is to identify the major driving parameters that lead to the increase in metal temperature when TBC is damaged, such that more quantitative estimates of blade life and refurbishing needs can be made. A two-dimensional computational Conjugate Heat Transfer model was developed; fully resolving the hot gas path and TBC, bond-coat, and super alloy solids. Representative convective conditions were applied to the cold side to emulate the characteristics of a cooled turbine blade. The hot gas path properties included an inlet temperature of 1600 K with varying Mach numbers of 0.30, 0.59, and 0.80 and Reynolds number of 5.1×105, 7.0×105, and 9.0×105 as referenced from the leading edge of the model. The cold side was given a coolant temperature of 750 K and a heat transfer coefficient of 1500 W/m2*K. The assigned thermal conductivities of the TBC, bond-coat, and metal alloys were 0.7 W/m*K, 7.0 W/m*K, and 11.0 W/m*K, respectively, and layer thicknesses of 0.50 mm, 0.25 mm, and 1.50 mm, respectively. A flat plate model without the presence of the chip was first evaluated to provide a basis of validation by comparison to existing correlations. Comparing heat transfer coefficients, the flat plate model matched within uncertainty to the Chilton-Colburn analogy. In addition, flat plate results captured the boundary layer thickness when compared with Prandtl’s 1/7th power-law. A chip was then introduced into the model, varying the chip width and the edge geometry. The most sensitive driving parameters were identified to be the chip width and Mach number. In cases where the chip width reached 16 times the TBC thickness, temperatures increased by almost 30% when compared to the undamaged equivalents. Additionally, increasing the Mach number of the incoming flow also increased metal temperatures. While the Reynolds number based on the leading edge of the model was deemed negligible, the Reynolds number based on the chip width was found to have a noticeable impact on the blade temperature. In conclusion, this study found that chip edge geometry was a negligible factor, while the Mach number, chip width, and Reynolds number based on the chip width had a significant effect on the total metal temperature.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3