Evolution of Line-Pipe Steel and Its Implications for Transmission Pipeline Design

Author:

Leis B. N.1

Affiliation:

1. Battelle Columbus Laboratories, Columbus, OH

Abstract

This paper discusses the evolution of line-pipe steel against the background of the failure incidence and the design basis for transmission pipelines, with a focus on those transporting natural gas. Working-stress design (WSD) is introduced as background for analysis of incident experience. It is shown that failure incidence does not correlate with the WSD factor of safety on pressure-induced stress, leading to the underlying causes of failure and discussion of alternative design philosophies, and consideration of safety factors other than those based on stress, or the effect of pressure. Full-scale test data are discussed to rationalize why failure frequency does not correlate with factor of safety. These results point to a very large factor of safety on pressure, with failure pressure found much in excess of the specified minimum yield stress (SMYS), the reference stress for WSD-based pipeline design. Full-scale failure at pressures much in excess of that for in-service incidents motivates discussion of causes of such failures and brings into question the utility of alternative design philosophies. The role of toughness is introduced as key to the success of WSD and alternative design philosophies. The historical evolution of both strength and toughness is then introduced along with apparent differences in toughness depending on how it is characterized. Historical trends are contrasted to those for modern steels, with diametrically opposing trends evident. The implications for design are discussed with reference to fracture control plans and methods to characterize required arrest toughness.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3