The Pipeline Defect Assessment Manual

Author:

Cosham Andrew1,Hopkins Phil1

Affiliation:

1. Penspen Andrew Palmer, Newcastle upon Tyne, UK

Abstract

Oil and gas transmission pipelines have a good safety record. This is due to a combination of good design, materials and operating practices. However, like any engineering structure, pipelines do occasionally fail. The major causes of pipeline failures around the world are external interference and corrosion; therefore, assessment methods are needed to determine the severity of such defects when they are detected in pipelines. Defects occurring during the fabrication of a pipeline are usually assessed against recognised and proven quality control (workmanship) limits. These workmanship limits are somewhat arbitrary, but they have been proven over time. However, a pipeline will invariably contain larger defects at some stage during its life, and these will require a ‘fitness-for-purpose’ assessment to determine whether or not to repair the pipeline. Consequently, the past 40 years has seen a large number of full scale tests of defects in pipelines, and the development of a number of methods for assessing the significance of defects. Some of these methods have been incorporated into industry guidance, others are to be found in the published literature. However, there is no definitive guidance that draws together all of the assessment techniques, or assesses each method against the published test data, or recommends best practice in their application. To address this industry need, a Joint Industry Project has been sponsored by fifteen international oil and gas companies to develop a Pipeline Defect Assessment Manual (PDAM). PDAM documents the best available techniques currently available for the assessment of pipeline defects (such as corrosion, dents, gouges, weld defects, etc.) in a simple and easy-to-use manual, and gives guidance in their use. PDAM is based on an extensive critical review of pipeline fitness-for-purpose methods and published test data. It is intended to be another tool to help pipeline engineers maintain the high level of pipeline safety. In addition to identifying the best methods, PDAM has served to identify a number of limitations in the current understanding of the behaviour of defects in pipelines, and the empirical limits in the application of existing methods. This paper discusses the PDAM project, in the context of both the current best practice available for defect assessment and the limitations of current knowledge.

Publisher

ASMEDC

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3