Investigation Into the Use of a Single Specimen for the Determination of Dynamic Steady State Propagation Resistance in High Toughness Line-Pipe Steels

Author:

Rudland David L.1,Wilkowski Gery1,Wang Yong-Yi1,Horsley David2,Rothwell Brian2,Glover Alan2

Affiliation:

1. Engineering Mechanics Corporation of Columbus, Columbus, OH

2. TransCanada PipeLines, Ltd., Calgary, AB, Canada

Abstract

This paper summarizes efforts funded by TransCanada PipeLine Limited on improving the methodology for predicting a true measure of the dynamic steady-state fracture toughness of line-pipe steels using a single mill test specimen. In the past, ductile fracture methodologies generally involved using the Charpy V-notch test to empirically quantify the material dynamic ductile fracture propagation resistance. However, due to its geometry, the use of the Charpy test has proven to be unreliable for high-toughness materials, for materials that have rising-shelf energies, and for higher-grade steels (relative to those for which correlations were originally established). An improved methodology for characterizing the dynamic ductile fracture resistance is to utilize the energy from a full-thickness impact specimen, of which the Drop-Weight Tear Test (DWTT) specimen is the most frequently used type. It has been demonstrated that the total energy from a DWTT-type specimen includes; (1) the energy associated with initiation of the crack (including indentation energy and yielding of the specimen), (2) the energy for transient crack growth from initiation to reaching steady-state fracture, (3) steady-state fracture energy, and (4) a non-steady-state fracture energy region at the end of the test. During the steady-state fracture region it was observed that both the crack velocity and constant crack-tip-opening angle (CTOA) remained constant. This paper presents the results of an investigation aimed at identifying a single specimen that will capture only the steady-state fracture energy present in standard DWTT specimens. Detailed experiments and three-dimensional finite element analyses were used to verify various procedures for eliminating the initiation energy and the residual energy at the end of the tests. A non-instrumented modified specimen, the back-slotted, static-precracked DWTT (BS-SPC-DWTT) specimen, has been developed from the results of these analyses. Energy results from this specimen, for a variety of line-pipe steels, are presented. A correlation between these energies and the propagation energy from standard DWTT specimen is presented. This correlation will aid in the methodology for predicting axial crack arrest in line-pipe steels having higher toughness, a rising upper shelf, or a higher grade.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3