One-Dimensional Modeling for Pulsed Flow Twin-Entry Turbine

Author:

Yang Bijie1,Martinez-Botas Ricardo1,Xue Yingxian2,Yang Mingyang2

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London SW7 2BX, UK

2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Abstract One-dimensional (1D) modeling is critical for turbomachinery unsteady performance prediction and system response assessment of internal combustion engines. This paper uses a novel 1D modeling (TURBODYNA) and proposes two additional features for the application to a twin-entry turbocharger turbine. Compared to single-entry turbines, twin-entry turbines enhance turbocharger transient response and reduce engine exhaust valve overlap periods. However, out-of-phase high-frequency pulsating pressure waves lead to an unsteady mixing process from the two flows and pose great challenges to traditional 1D modeling. The present work resolves the mixing problem by directly solving mass, momentum, and energy conservation equations during the mixing process instead of applying constant pressure assumption at the limb–rotor joint. Comparisons of TURBODYNA and an experimentally validated CFD suggest that TURBODYNA cannot only provide a very good agreement on turbine performance but also accurately capture unsteady features due to flow field inertial and pressure wave propagation. Levels of accuracy achieved by TURBODYNA have proved superior to traditional 1D modeling on turbine performance and the generality of the current 1D modeling has been explored by extending the application to other turbine featuring distinct characteristics.

Publisher

ASME International

Subject

Mechanical Engineering

Reference21 articles.

1. Downsizing of Gasoline Engine: An Efficient Way to Reduce CO2 Emissions;Leduc;Oil Gas Sci. Technol.,2006

2. Turbocharging the Internal Combustion Engine

3. A Comparison of a Mono, Twin and Double Scroll Turbine for Automotive Applications;Walkingshaw,2015

4. A Comparison of Timescales Within a Pulsed Flow Turbocharger Turbine;Copeland,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3