A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part II—Multiple Domains, Elastoplastic Contacts and Applications

Author:

Wang S.1,Komvopoulos K.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

The limitation of the fractal theory as applied to real surfaces is interpreted, and engineering surfaces are considered as a superimposition of fractal structures on macroscopic regular shapes by introducing the concepts of fractal-regular surfaces and multiple fractal domains. The effects of frictional heating at neighboring microcontacts are analyzed, and a simple solution of the temperature distribution is obtained for contact regions that are appreciably larger than a fractal domain. It is shown that the temperature rise at an elastoplastic microcontact does not differ significantly from that at an elastic microcontact of a similar geometry under the same load. The fractional real contact area subjected to temperature rises greater than any given value is represented by a complementary cumulative distribution function. The analysis yields that the average value and standard deviation of the temperature rise at the real contact area are 0.4 and 0.24 times the maximum temperature rise, respectively. The implications of the theory in boundary lubrication are demonstrated in light of results for ceramic materials.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3