Electroplated Connections Between Carbon Fiber and Nickel

Author:

Bilger Christopher1,Bruck Hugh A.1,Dasgupta Abhijit1

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, College Park, MD 20902

Abstract

Carbon has become an attractive material for electronic packaging applications, such as interconnects, because of its low density and reasonable electrical conductivity. One challenge in these applications is overcoming the inherent chemical incompatibility between carbon and metals that limits adhesion. Recently, we explored a new technique for electroplating carbon fibers with nickel. Electroplated carbon fiber tows were soldered to nickel metal tabs using SAC 305 (Sn3Ag0.5Cu). The electroplated nickel was found to be free of microvoids with (Ni,Cu)3Sn4 forming as intermetallic compounds (IMCs) in an annular region presumed to be Ni3Sn4 at the SAC 305-Ni interface. Mechanical characterization of the carbon fiber–nickel interface revealed bond strengths up to 434 N, which is similar to a 22 gauge high strength copper clad steel. Electrical resistances were found to be as low as 1.1 Ω for a 38.1 mm long connection. Carbon–metal connections prepared using silver epoxy were found to have 80% lower load bearing capacity and 10–20% higher electrical resistance. Battery discharge tests indicated that the carbon connections reduced performance by only 4% compared to conventional copper. The performance drop increased to 7% when the discharge time was increased by 50%, indicating some thermal dependence. The electroplating technique is a fairly simple and inexpensive means of enhancing the wettability of carbon fiber to create scalable carbon-based conductors for low current systems.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference18 articles.

1. Improving Materials for Thermal Interface and Electrical Conduction by Using Carbon,2007

2. Recent Development of Carbon Materials for Li Ion Batteries;Carbon,2000

3. Surface Properties of Carbon Fibres,2013

4. Nanothermal Interface Materials: Technology Reviews and Recent Results;ASME J. Electron Packag.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3