A New High-Temperature Gel for Profile Control in Heavy Oil Reservoirs

Author:

Wang Changjiu1,Liu Huiqing1,Zheng Qiang2,Liu Yongge3,Dong Xiaohu1,Hong Cheng1

Affiliation:

1. Department of Petroleum Engineering, China University of Petroleum-Beijing, Changping, Beijing 102249, China e-mail:

2. CNOOC Research Institute of China National Offshore Oil Corporation, Dongcheng, Beijing 100027, China e-mail:

3. Department of Petroleum Engineering, China University of Petroleum (East China), Shandong, Qingdao 266580, China e-mail:

Abstract

Controlling the phenomenon of steam channeling is a major challenge in enhancing oil recovery of heavy oil reservoirs developed by steam injection, and the profile control with gel is an effective method to solve this problem. The use of conventional gel in water flooding reservoirs also has poor heat stability, so this paper proposes a new high-temperature gel (HTG) plugging agent on the basis of a laboratory experimental investigation. The HTG is prepared with nonionic filler and unsaturated amide monomer (AM) by graft polymerization and crosslinking, and the optimal gel formula, which has strong gelling strength and controllable gelation time, is obtained by the optimization of the concentration of main agent, AM/FT ratio, crosslinker, and initiator. To test the adaptability of the new HTG to heavy oil reservoirs and the performance of plugging steam channeling path and enhancing oil recovery, performance evaluation experiments and three-dimensional steam flooding and gel profile control experiments are conducted. The performance evaluation experiments indicate that the HTG has strong salt resistance and heat stability and still maintains strong gelling strength after 72 hrs at 200 °C. The singular sand-pack flooding experiments suggest that the HTG has good injectability, which can ensure the on-site construction safety. Moreover, the HTG has a high plugging pressure and washing out resistance to the high-temperature steam after gel forming and keeps the plugging ratio above 99.8% when the following steam injected volume reaches 10 PV after gel breakthrough. The three-dimensional steam flooding and gel profile control experiments results show that the HTG has good plugging performance in the steam channeling path and effectively controls its expanding. This forces the following steam, which is the steam injected after the gelling of HTG in the model, to flow through the steam unswept area, which improves the steam injection profile. During the gel profile control period, the cumulative oil production increases by 294.4 ml and the oil recovery is enhanced by 8.4%. Thus, this new HTG has a good effect in improving the steam injection profile and enhancing oil recovery and can be used to control the steam channeling in heavy oil reservoirs.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3