An Experimental Study on Mechanics of Wax Removal in Pipeline

Author:

Wang Qian1,Sarica Cem1,Chen Tom X.2

Affiliation:

1. TUFFP, The University of Tulsa, Tulsa, OK 74104

2. Texaco Inc.

Abstract

Pigging has been recognized as the most cost-effective method for preventing flow restriction by wax deposits in subsea flowlines. However, the pigging mechanics for wax removal in pipelines is still very poorly understood. A unique test facility was designed and constructed for experimental studies on the mechanics of wax removal in pipelines. The test facility consisted of a test section, a support structure, an apparatus to pull the pig through the test pipe, and a computer-based data acquisition system. The test section was 6.4m(21ft) long and was made from 0.0762m(3in.) inner diameter schedule-40 steel pipe. The mixture of commercial wax and mineral oil was cast inside the test section at different wax thickness and oil contents. A series of experiments was performed to investigate the wax removal mechanics with three different types of conventional pigs, i.e., cup, disc, and foam pigs. The experiments showed that a typical wax removal process using a pig followed four distinct phases, namely, wax breaking, plug formation, accumulation, and production phases. Wax accumulation can be very significant and is expected to be the dominating factor for the force required for moving a pig in long pipelines. As wax thickness and hardness increases, the required force to move the pig increases. The shape and material of the pig have a profound effect on the wax removal performance. While the disc pig provides the most efficient wax removal, the force requirement is excessive, especially for thicker and harder wax deposits. The wax removal performance of a cup pig is very similar to that of a disc pig. However, the cup pig can withstand higher load without mechanical damages than the disc pig. The foam pig offers the poorest wax removal performance.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference4 articles.

1. Matzain, A. , 1996, “Single Phase Liquid Paraffin Deposition Modeling,” MS. Thesis, Univ. of Tulsa.

2. Kershaw, C. F., and Hersaw, B. G., 1997, “Scale Removal in Pipelines,” J. Offshore Technol., 5(4), pp. 37–38.

3. Engineering of the Pigging Equipment for Subsea Systems in Campos Basin;Lino

4. Mendes, P. R. S., Braga, A. M. B., Azevedo, L. F. A., and Correa, K. S., 1999, “Resistive Force of Wax Deposits During Pigging Operations,” ETCE99-6671, presented at 1999 Energy Technology & Conference Meeting of ASME’s Petroleum Division, Houston, TX.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3