Scaling Analysis and a Critical Thickness Criterion for Thermosetting Composites

Author:

Secord Thomas W.1,Mantell Susan C.2,Stelson Kim A.2

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

2. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

In thermosetting composite manufacturing, part thickness, mold temperature, pressure, and resin kinetics can affect the uniformity of cure in the finished part. If the interaction of these parameters is not accounted for, then unwanted overshoot of the processing temperature can occur within a part during cure. In this paper, the relationship between processing and material parameters was considered to establish a critical thickness separating parts having large overshoots from parts having small overshoots. The one-dimensional heat equation with an autocatalytic relation for curing was used to model the process. The equations were placed in dimensionless form using a scaling analysis. A finite difference model was also created to calculate part temperatures during cure as a function of the key dimensionless groups. For experimental validation, composite plates of varying thickness were fabricated from a glass fiber prepreg material, and the processing conditions were varied according to thickness. The scaling analysis identified five dimensionless groups. Two of these groups were found to affect the overshoot of the temperature: the modified Damköhler number Da∗, which includes the heat generated during the reaction, and the dimensionless temperature ramp rate t¯rise, which describes the tooling temperature ramp rate relative to the natural time scale of the heat transfer. There was good agreement between the numerical model prediction of temperature overshoot and the experimental data. The results also confirm that the behavior of thin and thick parts, as defined by the relative temperature overshoot, can be well defined and predicted by the two proposed dimensionless groups: Da∗ and t¯rise.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3