Development of a Numerical Optimization Method for Blowing Glass Parison Shapes

Author:

Groot J. A. W. M.1,Giannopapa C. G.1,Mattheij R. M. M.1

Affiliation:

1. Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

Industrial glass blowing is an essential stage of manufacturing glass containers, i.e., bottles or jars. An initial glass preform is brought into a mold and subsequently blown into the mold shape. Over the past few decades, a wide range of numerical models for forward glass blow process simulation has been developed. A considerable challenge is the inverse problem: to determine an optimal preform from the desired container shape. A simulation model for blowing glass containers based on finite element methods has previously been developed (Giannopapa, 2008, “Development of a Computer Simulation Model for Blowing Glass Containers,” ASME J. Manuf. Sci. Eng., 130, p. 041003; Giannopapa and Groot, 2007, “A Computer Simulation Model for the Blow-Blow Forming Process of Glass Containers,” 2007 ASME Pressure Vessels and Piping Conference and 8th International Conference on CREEP and Fatigue at Elevated Temperature). This model uses level set methods to track the glass-air interfaces. The model described in a previous paper of the authors showed how to perform the forward computation of a final bottle from the given initial preform without using optimization. This paper introduces a method to optimize the shape of the preform combined with the existing simulation model. In particular, the new optimization method presented aims at minimizing the error in the level set representing the glass-air interfaces of the desired container. The number of parameters used for the optimization is restricted to a number of control points for describing the interfaces of the preform by parametric curves, from which the preform level set function can be reconstructed. Numerical applications used for the preform optimization method presented are the blowing of an axisymmetrical ellipsoidal container and an axisymmetrical jar.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference50 articles.

1. Numerical Simulation of Glass-Blowing;Cormeau

2. Numerical Modelling of Glass Forming Processes;Cséar de Sá;Eng. Comput.

3. Numerical Simulation of Glass Forming and Conditioning;Hyre;J. Am. Ceram. Soc.

4. A Computational Model for Glass Container Forming Processes;César de Sá

5. Development of a Computer Simulation Model for Blowing Glass Containers;Giannopapa;ASME J. Manuf. Sci. Eng.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3