Compressive Sensing Approach for Aeroengine Fan Noise Mode Detection

Author:

Bu Huanxian1,Yu Wenjun2,Huang Xun1

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong, Hong Kong

2. Aero Engine Academy of China, Aero Engine (Group) Corporation of China, Beijing, China

Abstract

To further simplify the sensor array set-ups and improve the mode detection capability for the aeroengine fan noise test, a new compressive sensing based methodology has been proposed. This paper reports the details of the validated aeroengine fan noise test method and the wind tunnel test results for the validation. The experimental set-up consists of a transition duct to the open jet, a mode synthesizer to generate different modes of characteristic fan noise, and a sensor array to conduct mode detection in the presence of background flow speeds and background noise interference. The main attention is primarily focused on the examination of the associated reconstruction accuracy and probability of success for spinning mode detection. The testing results clearly show the potential capability of the proposed new testing method for aeroengine tests in a practical testing facility.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mode identification of fan tonal noise in cylindrical duct based on Bayesian compressive sensing;Applied Acoustics;2024-06

2. Duct mode identification in a statistical model via the Iterative Bayesian Focusing;Mechanical Systems and Signal Processing;2023-03

3. Aero-engine Fan Acoustic Mode Detections via Orthogonal Matching Pursuit;2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD);2022-11-30

4. L1/2-norm Regularization for Detecting Aero-engine Fan Acoustic Mode;2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3