An Experimental Study of Using Vortex Generators As Tip Leakage Flow Interrupters in an Axial Flow Turbine Stage

Author:

Andichamy Veerandra C.1,Khokhar Gohar T.1,Camci Cengiz1

Affiliation:

1. Pennsylvania State University, University Park, PA

Abstract

The flow leaking through the gap between rotor blade tips and casing surface in a turbine stage is an important source of energy loss. The current study uses a new concept named as Tip Leakage Interrupters (TLI) to mitigate some of the adverse effects of the tip leakage flows and improve the efficiency of an axial turbine stage. The TLIs are a system of vortex generators attached onto the suction side of the turbine blade tip. The TLI design was developed in a proof of concept effort and they operate by inducing controlled vortical structures originating from strategically shaped/oriented multiple and sub-miniature vortex generators. These induced vortical structures, when properly interact with the tip leakage vortex reduce the damaging aerodynamic effects of the leakage flow. The TLIs in this investigation were mounted near the suction side corner of turbine blade tips rotating in a single-stage cold-flow turbine facility. In this investigation, three different parameters such as the mounting location of TLI on the airfoil tip region, the number of TLIs mounted and the specific orientation of TLI were varied. The TLI mounted near the minimum pressure point on the suction side of the blade generated the largest vortical structure that is counter rotating to the leakage vortex system and hence had the greatest effect in reducing the strength of the leakage vortex. Adding more TLIs on the blade suction surface was found to improve the tip leakage mitigation effort. The study showed that changing the specific orientation of the TLI with respect to the incoming flow drastically changes the rotational direction of the vortex it generates and its nature of interaction with the leakage vortex.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3