Aeroelastic Optimization of an Industrial Compressor Rotor Blade Geometry

Author:

Vanti Federico1,Pinelli Lorenzo1,Arnone Andrea1,Schneider Andrea2,Astrua Pio2,Puppo Enrico2

Affiliation:

1. University of Florence, Florence, Italy

2. Ansaldo Energia S.p.A., Genova, Italy

Abstract

This paper describes a multidisciplinary optimization procedure applied to a compressor blade-row. The numerical procedure takes into account both aerodynamic (efficiency) and aeromechanic (flutter-free design) goals nowadays required by turbo-machinery industries and is applied to a low pressure compressor rotor geometry provided by Ansaldo Energia S.p.A.. Some typical geometrical parameters have been selected and modified during the automatic optimization process in order to generate an optimum geometry with an improved efficiency and, at the same time, a safety flutter margin. This new automatic optimization procedure, which now includes a flutter stability assessment, is an extension of an existing aerodynamic optimization process, which randomly perturbs a starting 3D blade geometry inside a constrained range of values, build the fluid mesh and run the CFD steady analysis. The new implementation provides the self-building of the solid mesh, the FEM analysis and finally the unsteady uncoupled aeroelastic analysis to assess the flutter occurrence. After simulating a wide range of geometries, a database with all the constraint parameters and objective functions is obtained and then used to train a neural network algorithm. Once the ANN validation error is converged, an optimization strategy is used to build the Pareto front and to provide a set of optimum geometries redesigning the original compressor rotor. The aim of this paper is to show the opportunity to also take into account the aeroelastic issues in optimization processes.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of elastic deformation of the blade on the flow field in the blade cascade;Meccanica;2023-11-28

2. Interdisciplinary design optimization of compressor blades combining low- and high-fidelity models;Structural and Multidisciplinary Optimization;2023-03-16

3. Optimization study on the influence of little blades’ spatial position on a compressor cascade performance;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2021-10-31

4. Applications of little blades in a high-load compressor cascade with leaned blade;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-10-14

5. Effects of segmented layer suction and micro-vortex generator on a high-load compressor cascade performance;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3