Numerical and Experimental Study on Bleed Impact on Intermediate Compressor Duct Performance

Author:

Siggeirsson Elias M. V.1,Andersson Niklas1,Wallin Fredrik2

Affiliation:

1. Chalmers University of Technology, Gothenburg, Sweden

2. GKN Aerospace Engine Systems Sweden, Trollhättan, Sweden

Abstract

In this study, a comparison is done between an in-house experimental test rig at GKN Aerospace and simulations done using an in-house CFD solver at Chalmers University of Technology. The geometry represents an intermediate compressor duct of an aircraft engine. The main focus is on comparing the flow field at different operating conditions. Those conditions are controlled by extracted massflow through a bleed pipe, upstream of the intermediate compressor duct. The work presented in this paper is done using a RANS solver with the Spalart All-maras turbulence model. The CFD simulations compare well with measured data, for the lower bleed fraction, especially in terms of pressure coefficients in the intermediate compressor duct and at downstream locations. There are strong local effects due to instabilities in the bleed pipe for the higher bleed fraction, which caused the fluctuations in the pressure coefficient and resulted in degraded convergence. The difference in the flow field is also visible when comparing the operating points, where stronger total pressure wakes are noticed in the results for the lower bleed case.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3