Development of a Dry Low NOx Combustor for Dual Gaseous Fuels of Natural Gas and Petroleum Gas

Author:

Asai Tomohiro1,Miura Keisuke2,Abe Kazuki2,Matsubara Yoshinori3,Koganezawa Tomomi3,Hirata Yoshitaka3,Hayashi Akinori3,Yoshida Shohei3

Affiliation:

1. Mitsubishi Hitachi Power Systems, Ltd., Hitachinaka, Japan

2. Mitsubishi Heavy Industries, Ltd., Takasago, Japan

3. Mitsubishi Hitachi Power Systems, Ltd., Takasago, Japan

Abstract

Liquefied petroleum gas (LPG) will be suitable for satisfying part of the growing global energy demands. The widespread utilization of LPG as a gas turbine fuel for power generation requires an advanced combustor that achieves dry low nitrogen oxides (NOx) combustion and flashback-resistant combustion. This paper describes the development of a “multi-cluster combustor” as an advanced dry low NOx and flashback-resistant combustion technology for dual gaseous fuels of natural gas and petroleum gas. The dual gaseous fuel capability will contribute to expanding fuel flexibility. The purpose of this paper is to evaluate the feasibility of the dual gaseous fueled combustion with the multi-cluster combustor with the same configuration. The combustor was tested in a single-can combustor test stand at medium pressure with both fuels. In the tests, natural gas consisted mainly of methane with a content of over 90 vol.%, and petroleum gas consisted almost entirely of propane. The test results showed that the combustor achieves dry low NOx combustion of both fuels within their stable ranges without flashback. This paper concluded from the test results that the multi-cluster combustor possesses the potential capability to achieve dry low NOx and flashback-resistant combustion of dual gaseous fuels of natural gas and petroleum gas. As the next step, further tests will be required with petroleum gas including butane and for high pressure conditions.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3