Rapid Visualization of Compressor Blade Finite Element Models Using Surrogate Modeling

Author:

Bunnell Spencer1,Thelin Christopher1,Gorrell Steven1,Salmon John1,Ruoti Christopher2,Hepworth Ammon2

Affiliation:

1. Brigham Young University, Provo, UT

2. Pratt and Whitney, East Hartford, CT

Abstract

The design process for compressor blades is a highly iterative and often slow process. This research applied and measured the impact of using surrogates to quickly model the stresses on a compressor blade. By modeling distinct points on a finite element (FE) model with unique surrogates, the stress field of the entire FE model was quickly predicted. This required that the distinct points remain in the same relative location on each blade used in training the surrogate. This research studied the ability of mesh morphing, and using the surface nodes as those distinct points, to satisfy this requirement. The results show that mesh morphing performed well on the tested compressor blades. The research also found that the surrogate accuracy depended not only on the number of training samples, but also the number and types of parameters being emulated. The surrogate models achieved less than 5% error on all the tested blades. Finally, the method provided a 96% decrease in time required for a structural iteration of a compressor blade. Such speeds eliminate bottlenecks that may occur in the structural design process. The combination of mesh morphing and surrogate modeling in compressor blade analysis enables exploration of various geometric parameters and their effect on structural responses. Application of this process would produce a more thoroughly refined and understood compressor blade design.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3