Applying Dynamic Programming Algorithms to the Energy Management of Hybrid Electric Aircraft

Author:

Donateo Teresa1,Ficarella Antonio1,Spedicato Luigi1

Affiliation:

1. University of Salento, Lecce, Italy

Abstract

To explore the application of dynamic programming (DP) to the energy management strategies of hybrid electric aircraft, a hybrid powertrain for a lightweight rotorcraft is introduced and its dynamic control model is designed. The model is conceived for the Agusta-Westland A109 helicopter, a twin-engine rotorcraft used in various roles, such as light transport, search-and-rescue and military roles. The turboshaft single spool engines are modeled with the use of performance maps that allow part load specific fuel consumption to be calculated as a function of actual power request and flight conditions. The state-of-the-art lithium polymer batteries are used for the hybridization and their behavior is evaluated by the Sheperd-Peukert model. The control problem is modeled through a graph structure where a node is obtained from the intersection between a time value, representing the starting of a phase of flight, and a splitting factor, representing the percentage of propulsive power required to the battery in such a phase. The edge connecting two nodes concerns with the state transition and the weight of the edge refers to the transition cost. The goal is to find an optimal splitting sequence to minimize the total cost over the whole mission, that is given with regard to speed and altitude. The Dijkstra algorithm, which allows the shortest energy path to be found between nodes in a graph, is used to look for the optimum. A local optimum is achieved when the cost is defined as the fuel consumption whereas the global optimum can be attained when the model is enhanced to include the effect of the battery usage into the cost. The results are compared with the original non-hybrid case and the engine efficiency was suitable evaluated. The applicability to other mission data is suitably evaluated so as to deduce the concept of similarity of mission.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3