Demonstration of a Remotely-Controlled Swirl Generator for Simulating Aircraft Inlet Secondary Flows During Turbine Engine Ground Tests

Author:

Beale David1

Affiliation:

1. QuantiTech, Inc., Arnold AFB, TN

Abstract

The development of superior combat aircraft demands the complex integration of the airframe, engine, control system, avionics, and on-board weapon systems. The integration of the engine and the inlet is tantamount to prevailing in an engagement due to the thrust required to execute combat maneuvers. For this reason, test and evaluation methods have been developed to help ensure inlet-engine compatibility by design. The most commonly used methodology characterizes inlet distortion in terms of total-pressure descriptors and correlations. The method includes ground tests employing both wind tunnel and engine test facilities, to acquire the information needed to establish inlet-engine compatibility prior to flight test. Advanced aircraft employing evolving technologies never seen in legacy systems have introduced new challenges to the methodology, and to the ground test methods employed by the methodology. One such challenge arises from the significant flow angularity, or swirl, often found in advanced inlet systems. This paper focuses on the simulation of aircraft inlet swirl during direct-connect turbine engine ground tests. To meet the engine test challenges introduced by advanced aircraft, the Arnold Engineering Development Complex (AEDC) embarked on the development of a swirl generator capable of simulating the different types of swirl expected in future inlet systems over a wide range of swirl angles, and with the ability to remotely set steady-state or transient swirl patterns. The development progressed through a five-step process that culminated in the validation and demonstration of a fully-functional prototype. This paper focuses on the prototype swirl generator and the progression from the establishment of simulation requirements through the prototype validation. Following summaries of each development step, the results of the validation test are presented. The paper also summarizes a recent application of the prototype which not only demonstrated the device in an engine test, but which provided a data set to support swirl methodology development.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3