Numerical Investigation of an Inverted Brayton Cycle Micro Gas Turbine Based on Experimental Data

Author:

Agelidou Eleni1,Henke Martin1,Monz Thomas1,Aigner Manfred1

Affiliation:

1. German Aerospace Centre (DLR), Stuttgart, Germany

Abstract

Residential buildings account for approximately one fifth of the total energy consumption and 12 % of the overall CO2 emissions in the OECD countries. Replacing conventional boilers by a co-generation of heat and power in decentralized plants on site promises a great benefit. Especially, micro gas turbine (MGT) based combined heat and power systems are particularly suitable due to their low pollutant emissions without exhaust gas treatment. Hence, the overall aim of this work is the development of a recuperated inverted MGT as heat and power supply for a single family house with 1 kWel. First, an inverted MGT on a Brayton cycle MGT was developed and experimentally characterized, in previous work by the authors. This approach allows exploiting the potential of using the same components for both cycles. As a next step, the applicability of the Brayton cycle components operated in inverted mode needs to be evaluated and the requirements for a component optimization need to be defined, both, by pursuing thermodynamic cycle simulations. This paper presents a parametrization and validation of in-house 1D steady state simulation tool for an inverted MGT, based on experimental data from the inverted Brayton cycle test rig. Moreover, a sensitivity analysis is conducted to estimate the influence of every major component on the overall system and to identify the necessary optimizations. Finally, the component requirements for an optimized inverted MGT with 1 kWel and 16 % of electrical efficiency are defined. This work demonstrates the high potential of an inverted MGT for a decentralized heat and power generation when optimizing the system components.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3