Effects of Oscillations in the Main Flow on Film Cooling at Various Frequencies at a Low Blowing Ratio

Author:

Baek Seung Il1,Yavuzkurt Savas1

Affiliation:

1. Pennsylvania State University, University Park, PA

Abstract

The objective of this study was to investigate the effects of oscillations in the main flow on film cooling at various single frequencies at a low average blowing ratio of M = 0.5. The oscillations in the main flow could be a result of combustion instabilities that have been one of the major concerns for gas turbine industry. Understanding the effect of the instabilities on film cooling is important for better design of the gas turbine engines. The frequencies from 268 to 2144 Hz were identified as the dominant frequencies from a Fourier analysis of a combustor instability data on pressure oscillations. Lastly, the experimental data on gas turbine combustor instabilities is applied to the main flow using Fourier Series and the results are compared to those at single frequencies. Numerical simulations are carried out using LES Smagorinsky-Lilly and URANS k-epsilon models. This study is focused on film cooling effectiveness and heat transfer coefficient which are very important in calculation of the blade temperatures. The results show that as the frequency of the main flow goes from 0 to 180 Hz, the film cooling effectiveness is decreased due to enhancement of jet lift off with increasing frequency. However, when the frequency goes from 180 to 268 Hz, the film cooling effectiveness climbs up sharply because a thin coolant film near the wall is overlapped by large vortices containing the coolant. If the frequency changes from 268 to 1072 Hz, the effectiveness drops because the large vortices generated catch up with each other and they start overlapping and they are moved away from the wall. Main flow frequencies from 1072 to 2144 Hz cause an increase of the film cooling effectiveness since the coolant jet could not respond to these very high frequencies and the coolant behavior starts to return to that at 0 Hz gradually along with the effectiveness. In terms of heat transfer coefficients, when the oscillation frequency climbs from 0 to 536 Hz, the spanwise-averaged Stanton number ratio (Stm/Sto) increases due to growing disturbances in the flow. If the frequency is increased from 536 to 2144, the spanwise-averaged Stanton number ratio is decreased. When the oscillation frequency exceeds 536 Hz, the mixing between the hot mainstream and the coolant is reduced because jets do not respond to the flow oscillations as quickly by very short period.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3