Gas Turbine Fouling Offshore: Effective Online Water Wash Through High Water-to-Air Ratio

Author:

Madsen Stian1,Bakken Lars E.2

Affiliation:

1. Statoil ASA, Stavanger, Norway

2. Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Optimized operation of gas turbines is discussed for a fleet of eleven GE LM2500PE engines at a Statoil North Sea offshore field in Norway. Three engines are generator drivers and eight engines are compressor drivers. Several of the compressor drive engines are running at peak load (T5.4 control), hence production rate is limited by the available power from these engines. The majority of the engines discussed run continuously without redundancy, hence gas turbine uptime is critical for the field’s production and economy. The performance and operational experience with online water wash at high water-to-air ratio, as well as successful operation at longer maintenance intervals and higher average engine performance are described. This work is based on long-term operation with online washing, where operational data are collected and performance is analyzed over a 10-year period. Today, all engines are operated with 6-month intervals between maintenance stops, where offline crank wash is performed as well as other necessary maintenance and repairs. Online washing is performed daily between the maintenance stops at full load (i.e. normal operating load for the subject engine). To keep the engine as clean as possible and reduce degradation between maintenance stops, both an effective online water wash system and an effective air intake filter system are critical factors. The overall target is to maintain high engine performance, and extend the interval between maintenance stops through effective online washing. Water-to-air ratio is significantly increased compared to the OEM limit (OEM limit is 17 l/min which yields approx. 0.5% water-to-air ratio). Today the engines are operated at a water rate of 50 l/min (3 times the OEM limit) which yields a 1.4% water-to-air ratio. Such a high water-to-air ratio has been proven to be the key parameter for obtaining good online water wash effectiveness. Possible downsides of high water-to-air ratio have been thoroughly studied. The effect of optimized online water wash for the subject engines is longer intervals between maintenance stops, higher power availability, lower engine performance deterioration and reduced emissions (CO2 and NOx). The operating intervals are now extended to six months (4,000 hours), from initially two months (1,500 hours, early 1990s) followed by four months (3,000 hours, mid-2000s). Other installations operated as low as 750 hours between offline washes in the 1980s and 1990s. Of a total efficiency deterioration improvement of 6% over each 6-month operating period, the deterioration is reduced by an estimated 3% related to online water wash.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental study on the optimal performance of gas turbine (GT) inlet air filtration system for offshore application;Journal of Engineering and Applied Science;2023-10-26

2. Liquid Film Formation Influence on Erosion Induced in an Axial Compressor Subject to Water Washing;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023

3. Liquid Film Formation Influence on Erosion Induced in an Axial Compressor Subject to Water Washing;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023

4. A phenomenological study and comparison of the characteristics of droplet impact liquid film dynamics on randomly rough surfaces;Journal of Applied Physics;2022-07-07

5. Evaluation of water washing efficiency and erosion risk in an axial compressor for different water injection conditions;E3S Web of Conferences;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3