Performance of Lasered PCD- and CVD-Diamond Cutting Inserts for Machining Carbon Fiber Reinforced Plastics (CFRP)

Author:

Henerichs M.1,Dold C.2,Voß R.1,Wegener K.1

Affiliation:

1. ETH Zurich, Zurich, Switzerland

2. inspire AG, ETH Zurich, Zurich, Switzerland

Abstract

Carbon fiber reinforced plastics (CFRP) combine superior mechanical properties with a low weight. Consequently, this material is highly interesting for the aircraft as well as the automotive industry, leading to a massively increased application over the last years. However machining CFRP still faces different difficulties: The material is highly abrasive, most tool substrates and coatings face massive abrasive wear. Machining CFRP often results in many material defects like delamination, fiber pull-out, high surface roughness and burnt matrix material. Several technologies have been developed to combine ultra-hard tool surfaces and most adaptable cutting edge geometries. One of the most interesting approaches is laser machining of diamond cutting edges. The technology combines the wear resistance of thick layer diamonds with a geometrical flexibility so far known only for carbide tools. In the presented study, the wear resistance of different Polycrystalline Diamond (PCD) and Chemical Vapor Deposition (CVD)-Diamond grades machined with two different laser systems has been tested for machining CFRP. In comparison state-of-the-art grinded PCD cutting inserts are being tested. The comparison of machining characteristics is done by machining CFRP in a continuous turning process with a single fiber orientation. Machining forces are measured to evaluate tool wear. The resulting work piece quality is analyzed by measuring the surface roughness. The machined CFRP is a M21 resin system with an IMA-12K fiber from Hexcel©. Laser machined cutting inserts show equal or superior wear resistance compared to the grinded cutting inserts. In result today lasered cutting inserts are the machining tools available with the highest tool life time. In combination with the freely adaptable tool geometry, lasered cutting inserts are the superior tool system for upcoming machining tasks.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3