A Numerical and Experimental Study of Laminar Unsteady Lid-Driven Cavity Flows

Author:

Akyuzlu K. M.1

Affiliation:

1. University of New Orleans, New Orleans, LA

Abstract

An experimental and numerical study was conducted to study unsteady lid-driven cavity flows. More specifically, the development of the circulation patterns inside a square cavity due to the movement of a rigid impermeable lid at constant velocity was observed experimentally and predicted numerically by CFD codes. Particle Image Velocimeter (PIV) technique was used to determine the flow field as it develops from stagnation to steady state inside a one inch (25.4 mm) square cavity driven by an impermeable lid. To avoid the three dimensional effects on the primary vortex, the depth of the cavity is taken to be 5 inches (127 mm). Working fluid is water and it is seeded with hallow glass spheres with 10 microns diameter. Experimental study was conducted for different lid velocities corresponding to Reynolds numbers for laminar to intermittent turbulence. The numerical study was carried out using commercial and in-house CFD codes for the steady state case, and using a commercial CFD code for the unsteady case. The predictions of unsteady flow field inside the two-dimensional square cavity were made using these codes which employ second order accurate (temporally and spatially) implicit numerical schemes. A time and mesh independence study was carried out to determine the optimum mesh size and time increment for the unsteady case study. Comparisons of the numerically predicted and experimentally measured velocity fields are made for steady and unsteady cases. The results indicate that the numerical predictions capture the characteristics of the circulation inside the cavity reasonably well however the magnitude of the velocities are underestimated.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Lid-Driven Cavity;Computational Methods in Applied Sciences;2018-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3