Evaluation of Effective Elastic Mechanical Properties of Graphene Sheets

Author:

Alzebdeh Khalid I.1

Affiliation:

1. Sultan Qaboos University, Muscat, Oman

Abstract

The mechanical behaviour of a single-layer nanostructured graphene sheet is investigated using an atomistic-based continuum model. This is achieved by equating the stored energy in a representative unit cell for a graphene sheet at atomistic scale to the strain energy of an equivalent continuum medium under prescribed boundary conditions. Proper displacement-controlled (essential) boundary conditions which generate a uniform strain field in the unit cell model are applied to calculate one elastic modulus at a time. Three atomistic finite element models are adopted with an assumption that force interactions among carbon atoms can be modeled by either spring-like or beam elements. Thus, elastic moduli for graphene structure are determined based on the proposed modeling approach. Then, effective Young’s modulus and Poisson’s ratio are extracted from the set of calculated elastic moduli. Results of Young’s modulus obtained by employing the different atomistic models show a good agreement with the published theoretical and numerical predictions. However, Poisson’s ratio exhibits sensitivity to the considered atomistic model. This observation is supported by a significant variation in estimates as can be found in the literature. Furthermore, isotropic behaviour of in-plane graphene sheets was validated based on current modeling.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3