Design, Modeling, and Optimization for Highly Efficient Ionic Wind-Based Cooling Microfabricated Devices

Author:

Ongkodjojo Andojo1,Abramson Alexis R.1,Tien Norman C.1

Affiliation:

1. Case Western Reserve University, Cleveland, OH

Abstract

The purpose of this work is to re-design, model and optimize a single microfabricated ionic wind pump device [1]. The device could then be employed in a three-dimensional array for use in larger-scale microchip cooling and enhanced thermal spreading applications. The innovative microfabricated air-cooling technology employs an electrohydrodynamic corona discharge (i.e. ionic wind pump) for efficient heat removal from electronic components. Our single ionic wind pump element consists of two parallel collecting electrodes between which a single emitting tip is positioned. The collector electrodes are patterned with a grid structure, which enhances the overall heat transfer coefficient and facilitates a batch and IC compatible process. Various design configurations are explored and modeled computationally to investigate their influence on the cooling phenomenon. In particular, COMSOL Multiphysics™ is employed to computationally explore the effects of collector-emitter configuration on the electrohydrodynamic phenomenon, the flow field and resulting cooling effects. Using both computational and experimental results, we estimate that a two-dimensional array of microfabricated ionic wind pumps covering approximately 2″ square should be able to dissipate greater than 2 W of heat, using about 1/5 the power input as a conventional fan.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3