Translator Dynamics and Performance Comparison on One and Two Cylinder Free Piston Engines

Author:

Bade Mehar1,Clark Nigel N.1,Famouri Parviz1,Guggilapu PriyaankaDevi1

Affiliation:

1. West Virginia University, Morgantown, WV

Abstract

Free Piston Linear Engines and Alternators (FPLEA) may be designed following several different baseline configurations. Common designs include a translator that carries permanent magnets, with either one piston attached to one end of the translator, or a piston at each end of the translator. The single cylinder engine requires a reversing force from a spring so that it can operate whereas the dual cylinder version can operate without a spring, but inclusion of a stiff springs would serve to raise operating frequency. Higher spring constants drive higher frequencies and also reduce the variability of the FPLEA compression ratio. The major component choices include the use of one or two cylinders, a spring constant, a bore and a stroke, and volumetric heat release. For design, the alternator is a component with translating mass that depends by design on the frequency, stroke and electrical power. The alternator demand must be matched to the engine power or the operating condition will change for the next cycle. Though there are many different FPLEA configurations, the performance comparisons of several baseline configurations have not been completely explored. A MATLAB®/Simulink numerical model with translator rod dynamics and in-cylinder thermodynamics is employed to predict the overall performance and efficiency of diesel-fueled FPLEA. This allowed comparisons of different FPLEA configurations for a variety of design variables. First, a two-cylinder FPLEA design is considered where the spring constant is varied, changing the frequency of operation and the motion of the translator. The simulation results show that without springs the motion is far from sinusoidal, and low in frequency and power, whereas the presence of stiff springs in the system strongly dictates nearly sinusoidal motion and high power at high frequency. Further, Fourier coefficients are used to characterize the motion of springs for different configurations. Effects of other parameters such as stroke and bore are also examined. Comparison is also performed for competing designs with the same power, but with one or two cylinders. The results provide a basis for selecting major design parameters before proceeding with a detailed design.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3