Affiliation:
1. University of Houston, Houston, TX
Abstract
Chitosan is a naturally-occurring polymer that is derived through the deacetylation of chitin. Chitin, found in the exoskeletons of invertebrates, is ubiquitous in nature and easily collected as waste and repurposed for a multitude of industrial and biomedical applications. Development of composites of chitosan and carbon are attractive due to their availability, compatibility, and mechanical properties. In the present work we construct a chitosan composite reinforced with 2 wt% carbon nanostructures using mechanical milling. The carbon nanostructures consist of amorphous carbon, graphene-like, and graphitic nanostructures synthesized by mechanical exfoliation. We demonstrate that the mechanical properties of this composite material can be altered by varying the sintering conditions. Preliminary thermal analysis showed a degradation temperature around 220 ± 5 °C but this was also influenced by the duration of temperature exposure. The material was strengthened by adding carbon nano-composites and through sintering. Better sintering conditions occurred at lower temperatures and shorter times. The new material properties are characterized by means of mechanical testing, electron microscopy, Raman spectroscopy, and X-ray diffraction.
Publisher
American Society of Mechanical Engineers
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献