Cyber-Physical Vehicle Modeling, Design, and Development

Author:

Withrow Tom1,Myers Michael R.1,Bapty Ted1,Neema Sandeep1

Affiliation:

1. Vanderbilt University, Nashville, TN

Abstract

Vanderbilt University introduced a new course in the 2012 Fall Semester: Cyber-physical vehicle modeling, design and development. This course focused on the design, development, fabrication, verification, and validation of a scale vehicle in the virtual and the physical domains to meet a set of realistic and challenging design requirements for the Defense Advanced Research Projects Agency’s Model-Based Amphibious Racing Challenge. The students built a series of models in software and hardware to guide the design choices for the 1/5th scale amphibious vehicle. The culmination of this course was a competition against teams from other universities in January 2013 that compared the vehicle’s actual performance with student-created simulation models. This was an elective course outside the traditional capstone design curriculum and consisted of a team of juniors and seniors across the disciplines of mechanical engineering, electrical engineering, computer engineering, computer science, and physics. The students received robust training “to be an engineer” with many activities that can’t be included in a typical classroom environment: hands-on experience designing, modeling, and building a complete vehicle; simultaneously solving several open ended, rigid deadline challenges; and navigating complex team dynamics in a full end-to-end project. Additionally, the students gained experience using modern engineering modeling tools from the Defense Advanced Research Projects Agency’s META tool suite under development for the Fast, Adaptable, Next-Generation Ground Vehicle program. The META tool suite is a set of free, open source tools for compositional design synthesis at multiple levels of abstraction, design trade space exploration, metrics assessment, and probabilistic verification of system correctness. This work details the course activities and summarizes the lessons learned from a pedagogy perspective.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dependability analysis of a cyber-physical system for smart environments;Concurrency and Computation: Practice and Experience;2018-08-28

2. Health Assessment of Automotive Batteries Through Computational Intelligence-Based Soft Sensors: An Empirical Study;International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding;2017-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3