Microstructural Analysis of Porcine Skull Bone Subjected to Impact Loading

Author:

Ranslow Allison N.1,Kraft Reuben H.1,Shannon Ryan1,De Tomas-Medina Patricia1,Radovitsky Raul2,Jean Aurelie2,Hautefeuille Martin Pierre2,Fagan Brian2,Ziegler Kimberly A.3,Weerasooriya Tusit3,Dileonardi Ann Mae3,Gunnarsson Allan3,Satapathy Sikhanda3

Affiliation:

1. Pennsylvania State University, University Park, PA

2. MIT Institute for Soldier Nanotechnologies, Cambridge, MA

3. United States Army Research Laboratory, Aberdeen Proving Ground, MD

Abstract

Skull fracture can be a complex process involving various types of bone microstructure. Finite element analysis of the microscopic architecture in the bone allows for a controlled evaluation of the stress wave interactions, micro-crack growth, propagation and eventual coalescence of trabecular fracture. In this paper, the microstructure and mechanics of small-volume sections of a 6-month-old Gottingen Minipig skull were analyzed. MicroCT scans were used to generate finite element models. Various computational methods were investigated for modeling the intricacies contained within the porous microstructure of the trabecular bone. Pores were explicitly meshed in one method, whereas in the second, a mesh was created from a microCT image-informed mapping algorithm that mapped the trabecular porosity from an image stack to a solid volume mesh of the model. From here, all models were subject to uniaxial compression simulations. The output of the simulations allowed for a detailed understanding of the failure mechanics of the skull structure and allowed for comparison between the methods. Fracture typically occurs in the weakest areas where the bone is highly porous and forms a fracture surface throughout the material, which causes the bone to collapse upon itself.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3