Mechanics of Growing Solids: New Track in Mechanical Engineering

Author:

Manzhirov Alexander V.1

Affiliation:

1. Institute for Problems in Mechanics, Moscow, Russia

Abstract

A vast majority of objects around us arise from some growth processes. Many natural phenomena such as growth of biological tissues, glaciers, blocks of sedimentary and volcanic rocks, and space objects may serve as examples. Similar processes determine specific features of many industrial processes which include crystal growth, laser deposition, melt solidification, electrolytic formation, pyrolytic deposition, polymerization and concreting technologies. Recent researches indicates that growing solids exhibit properties dramatically different from those of conventional solids, and the classical solid mechanics cannot be used to model their behavior. The old approaches should be replaced by new ideas and methods of modern mechanics, mathematics, physics, and engineering sciences. Thus, there is a new track in solid mechanic that deals with the construction of adequate models for solid growth processes. The fundamentals of the mathematical theory of growing solids are under consideration. We focus on the surface growth when deposition of a new material occurs at the boundary of a growing solid. Two approaches are discussed. The first one deals with the direct formulation of the mathematical theory of continuous growth in the case of small deformations. The second one is designed for the solution of nonlinear problems in the case of finite deformations. It is based on the ideas of the theory of inhomogeneous solids and regards continuous growth as the limit case of discrete growth. The constitutive equations and boundary conditions for growing solids are presented. Non-classical boundary value problems are formulated. Methods for solving these problems are proposed.

Publisher

American Society of Mechanical Engineers

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3