Small Arrays of Single Beam Laser Sensors as Effective LiDAR Obstacle Detection Systems for Autonomous Vehicles

Author:

Soloiu Valentin1,Ibru Bernard1,Beyerl Thomas1

Affiliation:

1. Georgia Southern University, Statesboro, GA

Abstract

Ground vehicles with autonomous navigation require medium range external sensing for early obstacle detection and terrain mapping. Both are essential for path planning. The conventional method for accomplishing this is achieved by very complex and expensive LiDAR sensors with 32 to 64 individual lasers rotating rapidly and taking readings from the top of the vehicle. Our most pertinent research question however is to ascertain if a less cumbersome and cost effective setup of a small number of single beam laser rangefinder sensors can accomplish the same task. Our current method to achieve this is to sweep the sensors a variable number of steps along a predetermined angle. The information obtained is used to develop a complete and detailed view of the world around the autonomous vehicle. This paper is focused on a small laser ranger finder attached to a programmable pan-tilt mount positioned at the front of the autonomous vehicle. These were chosen as they are the most viable type of sensors for this process due to low interference and also because long range accuracy data can be obtained with reasonable power consumption. The sensors and mount are connected to a microcontroller which gathers position and distance information of significant objects in the path of the vehicle, in polar coordinates. This information is then converted to more useful Cartesian coordinates and plotted on a point cloud which is then used for path planning in real time. Future work will include sensor fusion of this system and an image sensor for detection of relevant objects such as traffic signs. Such systems establish a distance from the vehicle as well as distinguish them by shape and color.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3