Parametric Influences on the Nonlinear Dynamic Responses of a Rotor-Bearing-Foundation-Labyrinth Seal System

Author:

Zhang Enjie1,Jiao Yinghou1,Chen Zhaobo1,Mo Wenchao1,Wang Shuai1

Affiliation:

1. Harbin Institute of Technology, Harbin, China

Abstract

The modern engineering industries rely heavily on the reliable operation of rotating machinery, e.g., steam turbine and gas turbine. These rotating machineries are inevitable to be excited by the unbalance mass forces, the oil film forces and seal forces. Moreover, the turbines installed in an aircraft as well as vessel are also excited by the base vibration. In order to retain the healthy operation and prolong the interval between overhauls, an enormous amount of experimental and theoretical investigations have been focused on the dynamic behaviors of the rotor system. The dynamic characteristics of the rotor system influenced by the single source of vibration, such as unbalance, flowing lubricating oil, sealing medium etc., and combined sources of vibration have also been thoroughly researched. However, the dynamic responses of the rotor-bearing-foundation system subjected to labyrinth seal forces have seldom been studied. Furthermore, the previous analyses of the rotor dynamics mostly were linear. In fact, the fluid film forces are strongly nonlinear functions of the displacement and velocity of the rotor. As a result, the rotordynamics of the turbine is highly nonlinear. It is not accurate enough to be considered from a linear point of view. Applying the energy method, this paper established a dynamic model of the rotor-bearing-foundation-labyrinth seal system. The influences of the geometrical parameters and operating conditions, such as mass eccentricities, inlet pressure and rotational speed etc., on the nonlinear dynamic behaviors of the rotor system are numerically studied. The responses of the same system excited by one side of and both sides of base movement are also comparatively analyzed by means of spectrum cascades, bifurcation diagrams and whirl orbits as well as Poincaré maps.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3