Numerical Simulations and Experimental Data to Evaluate Residual Limb-Socket Interaction

Author:

Morotti Roberto1,Rizzi Caterina1,Regazzoni Daniele1,Colombo Giorgio2

Affiliation:

1. University of Bergamo, Bergamo, Italy

2. Politecnico di Milano, Milan, Italy

Abstract

This paper presents an automatic simulation procedure to study the stump-socket interaction that has been embedded within a software platform specifically developed to design lower limb prosthesis. In particular, it investigates and compares the results obtained by means of FE tools with the experimental data acquired with pressure transducers. A transfemoral (amputation above knee) male amputee has been considered as case study. Numerical simulations have been carried out considering different techniques to acquire the residuum geometry and different socket models. In details, two residuum geometric models were reconstructed starting from MRI images and from 3D scanning to investigate how acquisition techniques influence the final results. Two socket geometric models were taken into account. The first was the patient’s real socket, acquired by 3D scanning; the second one has been modeled using a dedicated CAD system, named Socket Modeling Assistant. The patient’s real socket has been also used to perform the experimental pressure measurements. The experimental data have been acquired by means of the Tekscan F-socket system. Results reached so far allowed identifying main criticalities and future developments to improve the accuracy of the numerical results and make available a full-automated simulation procedure.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-material design and 3D printing method of lower limb prosthetic sockets;Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques;2015-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3