Adaptive Industrial Robots Using Machine Vision

Author:

Kuts Vladimir1,Otto Tauno1,Tähemaa Toivo1,Bukhari Khuldoon1,Pataraia Tengiz1

Affiliation:

1. Tallinn University of Technology, Tallinn, Estonia

Abstract

The use of industrial robots in modern manufacturing scenarios is a rising trend in the engineering industry. Currently, industrial robots are able to perform pre-programmed tasks very efficiently irrespective of time and complexity. However, often robots encounter unknown scenarios and to solve those, they need to cooperate with humans, leading to unnecessary downtime of the machine and the need for human intervention. The main aim of this study is to propose a method to develop adaptive industrial robots using Machine Learning (ML)/Machine Vision (MV) tools. The proposed method aims to reduce the effort of re-programming and enable self-learning in industrial robots. The elaborated online programming method can lead to fully automated industrial robotic cells in accordance with the human-robot collaboration standard and provide multiple usage options of this approach in the manufacturing industry. Machine Vision (MV) tools used for online programming allow industrial robots to make autonomous decisions during sorting or assembling operations based on the color and/or shape of the test object. The test setup consisted of an industrial robot cell, cameras and LIDAR connected to MATLAB through a Robot Operation System (ROS). The online programming tests and simulations were performed using Virtual/Augmented Reality (VR/AR) toolkits together with a Digital Twin (DT) concept, to test the industrial robot program on a digital object before executing it on the real object, thus creating a safe and secure test environment.

Publisher

American Society of Mechanical Engineers

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AR-enhanced digital twin for human–robot interaction in manufacturing systems;Energy, Ecology and Environment;2024-05-25

2. Flexible Manufacturing System for Enhanced Industry 4.0 and Industry 5.0 Applications;2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2024-04-29

3. Reinforcement Learning Based Tactile Sensing for Active Point Cloud Acquisition, Recognition and Localization;IEEE Journal of Selected Topics in Signal Processing;2024-04

4. The Future of Artificial Intelligence in Manufacturing Industries;Advances in Logistics, Operations, and Management Science;2024-03-22

5. Error analysis of precision measurement with monocular vision;Engineering Research Express;2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3