A Natural Evolution Based Numerical Optimisation Framework to Develop and Enhance Airfoil-Slat Arrangement

Author:

Kumar Sushrut1,Gupta Priyam1,Singh Raj Kumar1

Affiliation:

1. Delhi Technological University, New Delhi, India

Abstract

Abstract Leading Edge Slats are popularly being put into practice due to their capability to provide a significant increase in the lift generated by the wing airfoil and decrease in the stall. Consequently, their optimum design is critical for increased fuel efficiency and minimized environmental impact. This paper attempts to develop and optimize the Leading-Edge Slat geometry and its orientation with respect to airfoil using Genetic Algorithm. The class of Genetic Algorithm implemented was Invasive Weed Optimization as it showed significant potential in converging design to an optimal solution. For the study, Clark Y was taken as test airfoil. Slats being aerodynamic devices require smooth contoured surfaces without any sharp deformities and accordingly Bézier airfoil parameterization method was used. The design process was initiated by producing an initial population of various profiles (chromosomes). These chromosomes are composed of genes which define and control the shape and orientation of the slat. Control points, Airfoil-Slat offset and relative chord angle were taken as genes for the framework and different profiles were acquired by randomly modifying the genes within a decided design space. To compare individual chromosomes and to evaluate their feasibility, the fitness function was determined using Computational Fluid Dynamics simulations conducted on OpenFOAM. The lift force at a constant angle of attack (AOA) was taken as fitness value. It was assigned to each chromosome and the process was then repeated in a loop for different profiles and the fittest wing slat arrangement was obtained which had an increase in CL by 78% and the stall angle improved to 22°. The framework was found capable of optimizing multi-element airfoil arrangements.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3