Cooling Systems for Refuge Alternatives in Hot Mine Conditions

Author:

Yan Lincan1,Yantek David1,Reyes Miguel1,Damiano Nicholas1,Srednicki Justin1,Bickson Joseph1,Whisner Bruce1,Bauer Eric2

Affiliation:

1. National Institute for Occupational Safety and Health (NIOSH), Pittsburgh, PA

2. BCS Life Support LLC, Titusville, FL

Abstract

The accumulated heat and humidity inside occupied refuge alternatives (RAs) can impose risk of heat stress to the occupants. The accumulated heat could be from the metabolic and environmental sources. For hot mines, the high ambient temperature makes it more difficult to dissipate heat accumulated inside the RA. A cooling system is then needed to reduce the interior heat and humidity. Two types of cooling systems were tested out for their cooling capacity. One cooling system is a portable, battery-powered, air conditioning system and the other is a portable cryogenic air supply. During the testing, the mine air temperature surrounding the RA was elevated to and maintained at 85°F to simulate hot mine environment. The tests demonstrated that both cooling systems were able to control the air temperature inside the RA even though they did not last the entire duration of a 96-hour test. This paper provides an overview of the test methodology and findings as well as guidance on improving the performance of both cooling systems, including: optimizing the cooling cycle for the battery-powered AC system and increasing the flow rate and tank storage capacity for the cryogenic system. The information in this publication is useful for RA manufacturers and mines to develop the cooling systems that will enable providing the life sustaining environment in mines with elevated temperatures.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cryogenic Air Supply for Cooling Built-in-Place Refuge Alternatives in Hot Mine;Mining, Metallurgy & Exploration;2020-02-29

2. Underground Mine Refuge Alternatives Heat Mitigation;Journal of Thermal Science and Engineering Applications;2019-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3