Massively Parallel Computational Fluid Dynamics With Large Eddy Simulation in Complex Geometries

Author:

Duggleby Andrew1,Camp Joshua L.1,Doron Yuval2,Fischer Paul F.3

Affiliation:

1. Texas A&M University; Exosent, LLC, College Station, TX

2. Exosent, LLC, College Station, TX

3. Argonne National Laboratory, Argonne, IL

Abstract

To perform complex geometry large eddy simulations in an industrially relevant timeframe, one must reduce the total time to half a day (overnight simulation). Total time includes the time of developing the mesh from the computer-aided design (CAD) model and simulation time. For reducing CAD-to-mesh time, automatic meshing algorithms can generate valid but often non-efficient meshes with often up to an order of magnitude more grid points than a custom-based mesh. These algorithms are acceptable only if paired with high-performance computing (HPC) platforms comprising thousands to millions of cores to significantly reduce computational time. Efficient use of these tools calls for codes that can scale to high processor counts and that can efficiently transport resolved scales over the long distances and times made feasible by HPC. The rapid convergence of high-order discretizations makes them particularly attractive in this context. In this paper we test the combination of automatic hexahedral meshing with a spectral element code for incompressible and low-Mach-number flows, called Nek5000, that has scaled to P >262,000 cores and sustains >70% parallel efficiency with only ≈7000 points/core. For our tests, a simple pipe geometry is used as a basis for comparing with previous fully resolved direct numerical simulations.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3