Mechanisms for Kink Band Evolution in Polymer Matrix Composites: A Digital Image Correlation and Finite Element Study

Author:

Patel Jay1,Peralta Pedro1

Affiliation:

1. Arizona State University, Tempe, AZ

Abstract

Polymer matrix composites (PMCs) are attractive structural materials due to their high stiffness and low weight to strength ratio. However, unidirectional PMCs have low shear strength and failure can occur along kink bands that develop on compression due to plastic microbuckling that carry strains large enough to induce nonlinear matrix deformation. The study of kink band nucleation and evolution in unidirectional composites (UDCs) is an active area of research. In the last five decades, a large body of research has been done to understand kink band mechanisms using theory and experiments. However, a large fraction of the existing work is for uniaxial compression. The effects of stress gradients, such as those present during bending, have not been as well explored, and these effects are bound to make difference in terms of kink band nucleation and growth. Furthermore, reports on experimental measurements of strain fields leading to and developing inside these bands in the presence of stress gradients are also scarce. This need to be addressed to gain a full understanding of their behavior when UDCs are used under bending and other spatially complex stress states, particularly given that the compressive strength of these composites is a function of stress-gradient. Therefore, the primary focus of this work is to understand mechanisms for kink band evolution under an influence of stress-gradients induced during bending. Digital image correlation (DIC) is used to measure strains inside and around the kink bands during 3-point bending of samples with 0°/90° stacking made of Dyneema HB80, a trademark of DSM. Measurements indicate bands nucleate at the compression side and propagate into the sample carrying a mixture of large shear and normal strains, while also decreasing its bending stiffness. Failure was produced by a combination of plastic microbuckling and axial splitting. The microstructure of the kink bands was studied and used in a microstructurally explicit finite element model (FEM). It has been used to analyze stresses and strains at ply level in the samples during kink band evolution, using cohesive zone elements to represent the interfaces between plies. Cohesive element properties were deduced by a combination of delamination, fracture and three-point bending tests used to calibrate the FEMs. Modeling results show that progressive buckling of plies leads to kink band nucleation and propagation and that the band morphology is sensitive to the shear and opening properties of the interfaces between the plies.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3