Microstructural Effects on Thermal Conductivity of Uranium Oxide: A 3D Multi-Physics Simulation

Author:

Lim Harn Chyi1,Rudman Karin1,Krishnan Kapil1,McDonald Robert1,Peralta Pedro1,Dickerson Patricia2,Byler Darrin2,Stanek Chris2,McClellan Kenneth J.2

Affiliation:

1. Arizona State University, Tempe, AZ

2. Los Alamos National Lab, Los Alamos, NM

Abstract

Transport mechanisms, such as mass and heat transfer, are critical to the efficiency and the reliability of nuclear fuels such as uranium oxide. These properties can be significantly affected by the microstructure of the material. This paper looks into the effects of grain boundary (GB) Kapitza resistance on the overall heat conductivity of UO2 using a 3-D finite element model with microstructurally explicit information. The model developed is created with a 3-D reconstruction of the microstructure of depleted uranium samples performed using serial sectioning techniques with Focused Ion Beam (FIB) and Electron Backscattering Diffraction (EBSD). The model treats grain bulks, GBs and triple junctions using elements of different dimensionalities, and it is thus capable of incorporating information of all three entities in one model while keeping a manageable computational cost. Furthermore, the properties of these microstructural entities are characterized by misorientation angles and Coincident Site Lattice (CSL) models, which provide a framework to assign spatially dependent thermal and mass transfer properties based on the location and connectivity of these entities in actual microstructures. Coupling between heat transfer and mass transfer of fission products is also taken into account in the study, to make it a multi-physics model capable of following the evolution of thermal performance as fission products are produced. These simulations can provide input and insight into the fuel pellet behaviors at the initial stage of power generation when burnups are low.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructurally Explicit Study of Transport Phenomena in Uranium Oxide;TMS 2014 Supplemental Proceedings;2014-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3