A Viscoelastic-Elastoplastic Finite Strain Framework for Modeling Polymers

Author:

Lapczyk Ireneusz1,Hurtado Juan A.1

Affiliation:

1. DS Simulia Corp., Providence, RI

Abstract

In this paper we present a new constitutive framework, the Parallel Rheological Framework (PRF), for modeling polymers that has been recently developed by the authors and implemented in the commercial finite element software Abaqus [1]. The framework is based on parallel finite-strain viscoelastic and elastoplastic networks. For each viscoelastic network a multiplicative split of the deformation gradient into elastic and viscous components is assumed. The evolution of the viscous component of the deformation gradient is governed by a flow rule obtained assuming the existence of a creep potential. The flow rule is expressed as a function of stress invariants and internal variables, and different evolution laws for the internal variables are allowed within the framework of the model. Similar to the viscoelastic networks, the deformation gradient in the elastoplastic network is decomposed into elastic and plastic components. The yield surface is defined assuming combined isotropic/kinematic hardening. The yield surface is a function of a scalar internal variable that describes isotropic hardening, and a tensorial internal variable (backstress) that describes the shift of the yield surface in the stress space. The evolution of the scalar variable is governed by associated flow rule, while the evolution of backstresses is determined by the Armstrong-Frederick law [2], which is extended to finite-strain deformations. Finally, stress softening is introduced into an elastoplastic network using a modified version of Ogden and Roxbourgh’s pseudo-elasticity model [3]. This paper presents an outline of the framework, including two recent enhancements: a new creep model (the power law model) and combined isotropic/kinematic hardening plasticity model. The framework is then applied to analyze numerically the uniaxial loading/unloading behaviors of filled natural rubber and an EPDM polymer. The results obtained using finite element simulations show very good correlation with experimental data.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3