Affiliation:
1. University of Johannesburg, Johannesburg, South Africa
Abstract
Solar car racing has created a competitive platform for research into alternative energy solutions and aids development in the green engineering space. The University of Johannesburg’s Solar Racing team developed a vehicle (Ilanga II) to compete in the 2014 South African Solar Car Challenge. This paper describes the numerical optimization of the vehicle’s body shape, utilizing Computational Fluid Dynamics (CFD) and finally compares the simulated results with the actual performance during the race. Motor control data is used to determine the aerodynamic drag coefficient of the vehicle. This work builds on the paper submitted in 2014 [1], which postulated the use of the Hermite cubic function in conjunction with the shape function analysis as a holistic design tool. By analyzing the motor control data it is possible to comment on the effectiveness of the shape function analysis technique. The final optimized design predicted a straight-line ACd 0.078. A yaw angle characterization study of ±25° degrees, in conjunction with historic weather data were used to fully characterize the vehicle with an average drag area coefficient of 0.119. The final comparative results of the simulated data and the race data show that the vehicle’s straight-line (Zero yaw) ACd was 11.2% higher than the simulated results, whereas the average aerodynamic characteristic ACd was 2.43% lower than the simulated results.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献