Cohesive Zone Models to Predict Multiple White Bumps in Flip-Chip Assemblies

Author:

Raghavan Sathyanarayanan1,Schmadlak Ilko2,Leal George3,Sitaraman Suresh K.1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

2. Freescale Halbleiter Deutschland GmbH, Munich, Germany

3. Freescale Semiconductor, Inc., Austin, TX

Abstract

The drive towards increased functional integration and improved performance in microelectronic devices has led to the introduction of more layers and porous dielectric materials in back end of line (BEOL) stack. These materials have low mechanical strength as well as adhesive strength and thus, interfacial delamination is a major reliability concern for modern microelectronic devices. In this work, we present a cohesive zone element based finite-element model to predict failures observed at the end of flip-chip assembly reflow process. During lead-free flip-chip assembly, thermo-mechanical stresses arise due to the coefficient of thermal expansion (CTE) mismatch between the organic substrate and the silicon die. Such stresses can be high enough to cause cracking of interlayer dielectric layers present in the vicinity of solder bump. In order to predict such failures, mixed mode cohesive zone parameters are first extracted from interfacial fracture characterization experiments of real-life BEOL stacks. Then, the characterized cohesive zone elements are embedded in 2D finite-element models of flip-chip assembly to predict the failure region. The predicted failure region is compared against 2D fracture mechanics based models as well as failure analysis experiment results. Cohesive zone elements are then implemented over multiple bumps to examine simultaneous failure of multiple bumps under reflow assembly, and thus, the effectiveness of cohesive zone elements compared to fracture mechanics approach is demonstrated.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Magnetic-Based Interfacial Adhesion Measurement Technique with Environmental Conditions;2022 IEEE 72nd Electronic Components and Technology Conference (ECTC);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3