CFD Calculations of Natural Circulation in a High Temperature Gas Reactor Following Pressurized Circulator Shutdown

Author:

Tung Yu-Hsin1,Johnson Richard W.2

Affiliation:

1. National Tsing Hua University, Hsinchu, Taiwan

2. Idaho National Laboratory, Idaho Falls, ID

Abstract

It is anticipated that in the event of the failure of the gas circulator in a prismatic gas-cooled very high temperature gas reactor (VHTR), there will develop natural convection currents in the core with the helium coolant. It is of interest to know the amount of energy transported by the helium plumes impinging on material surfaces in the upper plenum. Additionally, in the event of a rupture in an intermediate heat exchanger which contains water, it will be of great interest to understand the potential for free convection as it will convect water vapor, which will have detrimental effects on the core graphite. It is well known that heating a gas causes it to rise because the buoyant forces overcome gravitational forces. In the reactor, there will be hot walls that can provide heating to the helium, though the temperature of the coolant channel walls will be a function of the core depth, which makes the presence of free convection dependent on the particular conditions. In addition to the uncertainty of whether there will be sufficient buoyant forces to drive free convection, there is uncertainty as to what paths the helium will take in forming natural circulation loops. Computational fluid dynamic (CFD) calculations are reported herein that demonstrate the potential for the occurrence of natural circulation considering the core itself along with upper and lower plena and including flow paths in the gaps between the graphite blocks that allow bypass flow to occur. It is shown that multiple paths are possible for circulating flow.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3