A Biomimetic Elastic Cable Driven Quadruped Robot: The RoboCat

Author:

Kljuno Elvedin1,Zhu J. Jim1,Williams Robert L.1,Reilly Stephen M.1

Affiliation:

1. Ohio University, Athens, OH

Abstract

State of the art legged robots, such as the Honda’s series of bipedal robots ending in the latest advanced walking robot ASIMO, and the series of bipedal robots of Waseda University including the latest advanced robot WABIAN, employ joint-mount motors, which simplifies the analysis/design and traces the route for an effective control system, but results in legs that are heavy and bulky. Cable-driven robots overcome this shortcoming by allowing the motors to be mounted on or near the torso, thereby reducing the weight and inertia of the legs, resulting in lower overall weight and power consumption. To facilitate analysis and design, typical cable-driven robots use non-stretchable cables, which require at least n+1 motors for an n Degree-of-Freedom (DoF) joint. Therefore, for a robot with N joints, at least N additional motors are needed comparing to joint-mount motor drives. Moreover, the drive train of both joint-mount and cable-driven designs are rigid, which cannot effectively absorb ground impact shocks nor transfer potential energy to kinetic energy and vice versa when the robot is in motion, as biologic animals do. In this paper we present the design and test of a cat-size quadruped robot called RoboCat, which employs stretchable elastic cable-driven joints as inspired by biological quadruped animals. Although it complicates kinematics and dynamics analysis and design, the elastic cables allow n motors to be used for an n-DoF joint, thereby eliminating N motors for a robot with N joints comparing to non-stretchable cables, further realizing the weight and power savings of the cable driven design. Moreover, the elastic cable driven joints not only effectively absorb ground contact shock, but also effectively transfer potential and kinetic energy during walking or running, thereby improving the robot motion performance and energy efficiency. In the paper we will discuss the kinematics and dynamics analysis of elastic cable driven joints, implementation of elastic cable-driven joints on the Ohio University RoboCat, and control.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A multi-locomotion clustered tensegrity mobile robot with fewer actuators;Robotics and Autonomous Systems;2023-10

2. Variable Radius Drum Design for Cable-Driven Parallel Robots Based on Maximum Load Profile;Mechanisms and Machine Science;2023

3. Design of a Tendon-Actuated Foldable Wheeled-Legged Hybrid Mobile Robot with high load-bearing capacity;2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV);2022-12-11

4. Optimal Design of Cable-Driven Manipulators Using Particle Swarm Optimization;Journal of Mechanisms and Robotics;2016-03-07

5. Variable Radius Drum Mechanisms;Journal of Mechanisms and Robotics;2015-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3