Quantitative Analysis and Improvement of Countersink Depth in Stack Drilling

Author:

Ma Xinguo1,Wu Dan1,Nan Chenggen1,Gao Yuhao1

Affiliation:

1. Tsinghua University, Beijing, China

Abstract

While bolt fastening is the most commonly used method for fastening components, hole quality is an important technology standard in modern manufacturing, especially in the aircraft industry. With low stiffness, the machining deformation of aerospace structures has been a striking problem, which makes it difficult to achieve tight tolerance of countersink depth in one-shot drilling of stacked materials. As a result of the manufacturing errors between the workpieces and the digital models, the position of the workpiece surface can hardly be known before drilling. Moreover, the cutting force adds to the deformation of the thin-walled workpiece in the direction of the feed axis. In view of problems mentioned above, a method of position compensation based on the clamp foot displacement is proposed in the paper, which ensures the countersink depth accuracy by compensating for the deformations of clamping and countersinking respectively in different stages of drilling. Some drilling experiments were conducted, in which the forces in the feed direction were real-time monitored and recorded for FEM simulation. The influencing factors of countersink depth error are firstly discussed in this study, which mainly consists of the size of clamping force and the stiffness differences of variable drilling positions. Numerical simulations were carried out to study the deformation characteristics of workpiece under the combining effect of clamping force and cutting force achieved above. Comparing the simulation results and the experiment results, some other influencing factors of countersink depth are discussed.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Countersinking Accuracy Control Technology of Robot Drilling and Countersinking Integrated Drilling;2023 3rd International Conference on Computer, Control and Robotics (ICCCR);2023-03-24

2. Investigation on the countersink errors in the drilling of thin-wall stacked structures;The International Journal of Advanced Manufacturing Technology;2020-06

3. Prediction and compensation of countersinking depth error in drilling of thin-walled workpiece;The International Journal of Advanced Manufacturing Technology;2019-08-29

4. Countersink accuracy control of thin-wall CFRP/Al stack drilling based on micro peck strategy;The International Journal of Advanced Manufacturing Technology;2018-12-07

5. An approach to countersink depth control in the drilling of thin-wall stacked structures with low stiffness;The International Journal of Advanced Manufacturing Technology;2017-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3