Thermal Analysis of Encapsulated Phase Change Materials for Energy Storage

Author:

Zhao Weihuan1,Oztekin Alparslan1,Neti Sudhakar1,Tuzla Kemal1,Misiolek Wojciech M.1,Chen John C.1

Affiliation:

1. Lehigh University, Bethlehem, PA

Abstract

Concentrating solar power technology is recognized as an attractive option for solar power. A major limitation however is that solar power is available for only about 2,000 hours a year in many places. Therefore it is critical to find ways to store solar thermal energy for the off hours and it is better to store the energy at high temperatures. The present work deals with certain aspects of storing solar thermal energy at high temperatures with phase change materials (PCM) in the range of 275°C to 425°C. NaNO3 is selected as a phase change material encapsulated by stainless steel. The objective is the storage of hundreds mega-watt-hours equivalent of solar energy in systems using encapsulated phase change materials (EPCM). Numerical predictions of conduction and phase change processes are reported here in the form of transient temperature profiles in the PCM and encapsulation materials of EPCM capsules for convective boundary conditions outside EPCM. The time for heating and melting during charging (storage of thermal energy into encapsulated phase change material) and the time for cooling and solidification during discharging (discharge/retrieval of thermal energy) are predicted for NaNO3 PCM in encapsulation. For a temperature range of about 125°C around melting/freezing temperature of the PCM the time it takes to melt/freeze the PCM during storage/retrieval is much longer than the time it takes for diffusion (sensible heat) storage alone. Depending on the properties of the PCM, the energy associated with the latent heat of melting can be a significant leading to smaller thermal energy storage systems and lower costs. As can be expected, the time for heat transfer is much shorter for liquid heat transfer fluids compared to those for gaseous heat transfer fluids that transport the energy to the EPCM.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3