Effect of Surface Nanocrystallization Pretreatment on the Tribological Properties of Plasma Nitrided AISI 316 L Stainless Steel Under Boundary Lubrication

Author:

Wang Yanyan1,Yue Wen23,Kang Jiajie24,Zhu Lina23,Fu Zhiqiang23,Wang Chengbiao23

Affiliation:

1. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China

2. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;

3. National International Joint Research Center of Deep Geodrilling Equipment, Beijing 100083, China

4. National International Joint Research Center of Deep Geodrilling Equipment, Beijing 100083, China e-mail:

Abstract

It has been proved that surface nanocrstallization pretreatment is beneficial to plasma nitriding of steel by enhancing nitrogen diffusion, while the tribological properties of the nitrided nanostructured steel under boundary lubrication are not clear. In this work, AISI 316 L stainless steel with and without ultrasonic cold forging technology (UCFT) pretreatment was plasma nitrided at 500 °C for 4 h. The effects of UCFT pretreatment on the microstructure and properties of the nitrided layer and the tribochemical interactions between the nitrided layer and friction modifier molybdenum dithiocarbamate (MoDTC) and antiwear additive zinc dialkyldithio-phosphate (ZDDP) were investigated using SRV tribometer, scanning electron microscopy (SEM), vickers hardness tester, optical microscope, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). Surface analyses confirm the formation of a 20 μm thick nitrided layer on the UCFT-pretreated sample and it had higher hardness than that on the unpretreated sample. Furthermore, the nitrided UCFT-pretreated sample presented better synergetic effect with MoDTC and ZDDP on tribological behaviors than the nitrided unpretreated sample. This is attributed to the higher contents of Mo, S, Zn, P, and MoS2/MoO3 ratio in the tribofilms on the nitrided UCFT-pretreated sample.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Beijing Nova Program

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3