Modeling of Finite-Length Line Contact Problem With Consideration of Two Free-End Surfaces

Author:

Zhang Haibo1,Wang Wenzhong2,Zhang Shengguang1,Zhao Ziqiang1

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 10008, China

2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 10008, China e-mail:

Abstract

Finite-length line contact conditions, existing in applications such as gears or roller bearings, lead to subsurface stress distribution influenced by the free boundaries. This paper presents a semi-analytical method (SAM) for the finite-length line contact problem, based on the overlapping concept and matrix formation, to consider the effect of two free-end surfaces. In order to obtain two free surfaces, three half-spaces with mirrored loads to be solved are overlapped to cancel out the stresses at expected surfaces. The error introduced by this method is analyzed and proven to be negligible. The conjugate gradient method (CGM) is used to solve the pressure distribution, and the fast Fourier transform (FFT) is used to speed up the elastic deformation and stress-related calculation. The model is verified by finite element method (FEM) and shows a high conformity and efficiency. Besides, the line contact situations are discussed to explore the effect of free surfaces.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference20 articles.

1. A General Solution for the Elastic Quarter Space;ASME J. Appl. Mech.,1970

2. Contact Problems for the Elastic Quarter Plane and for the Quarter Space,1968

3. Hetenyi's Elastic Quarter Space Problem Revisited;Int. J. Solids Struct.,1983

4. A Contact Problem for the Elastic Quarter Space;Int. J. Solids Struct.,1984

5. A Simplified Analysis for an Elastic Quarter-Space;Q. J. Mech. Appl. Math.,1990

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3